SCIENCE MEETS LIFE

Fundamentals and Overview of bioinformatics pipelines for amplicon sequencing data analysis

Blastocystis COST Action Training School: Blastocystis and the Gut Microbiome

24-04-2024

Raul Y. Tito-Tadeo

Gut microbiota profiling

Morgan, X. C., Segata, N., & Huttenhower, C. (2013). doi:10.1016/j.tig.2012.09.005

Universal marker gene: SSU rRNA gene

Phylogenetic Tree of Life

http://www.biochem.umd.edu

Types of amplicon sequencing

ITS survey of fungal microbiome

- First we need a gene that is universally conserved (also called maker gene)
 - Ribosomal RNA works well
 - SSU (16S, 18S)
 - LSU (23S, 28S)
 - ITS
 - Universally conserved
 marker
 - E.g. ribosomal proteins
 - Diversity too high to get good primers

Ribosomal marker gene databases

- SILVA SSU & LSU
 - arb-silva.de
 - Frequent updates

green

- Most comprehensive database (SSU & LSU)
- 598,470 (SSU), 96,642(LSU) sequences
- Greengenes SSU
 - greengenes.secondgenome.c
 - Last update May 2013
 - 1,262,986 sequences
- Unite ITS
 - <u>unite.ut.ee/</u>
 - Relatively frequent upde
 - 690,548 sequences
- PR2-18S
 - specialized on protists

genes e database and

16S rRNA gene database and workbench compatible with ARB greengenes.lbl.gov

SILVA SSU / LSU 123 - full release

	SSU Parc	SSU Ref	SSU Ref NR	LSU Parc	LSU Ref
Minimal length	300	1200/900	1200/900	300	1900
Quality filtering	basic	strong	strong	basic	strong
Guide Tree	no	no	yes	no	yes
Release date	23.07.15	23.07.15	23.07.15	23.07.15	23.07.15
Aligned rRNA sequences	4,985,791	1,756,783	597,607	563,332	96,642

Error rates

Α

Error rate distribution

Table 1. Statistics of mappable length and error rates of PacBio and ONT long reads.

	Mappable length (bp)			Error rate (Proportion of overall error) (%)				
Read type	Mean	Median	Standard deviation	Maximum	Overall	Insertion	Deletion	Mismatch
PacBio CCS	1772	1464	1132	8006	1.72	0.087 (5.06)	0.34 (19.48)	1.30 (75.46)
PacBio subread	1570	1299	1076	16040	14.20	5.92 (41.71)	3.01 (21.17)	5.27 (37.12)
ONT 2D	1861	1754	882	9126	13.40	3.12 (23.30)	4.79 (35.70)	5.50 (40.99)
ONT 1D	1695	1602	824	9345	20.19	2.93 (14.51)	7.52 (37.24)	9.74 (48.25)

The fractions of each error types are in parenthesis. The fractions of the most predominant error types in each data are in bold.

	NS	PacBio	Illumina	Ion Torrent
Read	Variable (200 bp up to	Up to	Up to 600 bp	Up to 400
length	2 Mbps)	20 kb	(2x300 PE)	bp (SE)
SNV error rate	1%-5%	0.1%*	<0.1%	<0.1%
Indel error rate	5%–10%	4%*	<0.1%	1%

PE, pair-end; SE, single-end; *Error-rate estimation of PacBio circular consensus sequencing (CCS) method.

Population cohort

Dual Index and controls!

16S rRNA 515F/806R R2 Forward TruSeq adaptor Index1 primer 515F CAAGCAGAAGACGGCATACGAGATGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT NNNNNNNNNNN GTGYCAGCMGCCGCGGTAA TruSeq Reverse adaptor Index2 primer **R1** 806R AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT NNNNNNNNNN GGACTACNVGGGTWTCTAAT

Dual Index and controls!

Composition within Bacteria (21 top Genus)

General pre-processing flow

Sequencing format (MiSeq, HiSeq, Novaseq)

0 -

Reads: 7793

Reads: 7793

50

100

150

200

250

C١

0 -

200

150

100

250

Cy

Table 1: Quality Scores and Base Calling Accuracy

Data crunching: general steps

Basic pipeline for 16S data preprocessing

- 1. Demultiplexing
- 2. Quality control and trimming
- 3. Merging R1 and R2
- 4. Chimera removal
- 5. Closed-reference OTU picking
- 6. De novo OTU picking
- 7. Taxonomic annotation
- 8. Tree building

Pipelines to analyzed microbiota amplicon sequencing data (ribosomal markers genes)

Different flavors

Qiime2 Pipeline

https://qiime2.org/

https://github.com/hildebra/lotus2?tab=readme-ov-file

https://nf-co.re/ampliseq/2.3.1

Pipelines

Input data: 16S Illumina raw data (pair end reads). Primer V3–V4 region						
		QIIME2 (Bolyen, 2019)	Bioconductor (Callahan 2016b) v 29 OCT 2018	USEARCH (Edgar, 2010)	mothur (Schloss, 2009) v 17/10/2018	
		Pair reads merging		Pair read merging		
Subtitution and indel errors removal Chimera filtering		Primer trimming Poor quality read removal Denoise Dereplication Error rate estimation Subtitution and indel errors removal Chimera filtering	Primer trimming Poor quality read removal Dereplication Error rate estimation Subtitution and indel errors removal	Primer trimming Poor quality read removal Dereplication Discard singletons	Primer trimmingPoor quality read removalDereplicationAligmentClean alignmentDereplicationPreclusterChimera filteringNon bacterial sequence removal	
bid r			Pair read merging			
Generating OTU/RSV table		Chimera filtering				
			Sequence clean-up: Chimera filtering			
Taxonomic assignations using SILVA 132 ribosomal RNA (rRNA) database as reference						
Outcome		ASVs	ASVs	OTUs	OTUs	

Marizzoni et al., 2020, Front. Microbiol.

Original sequences and amplified sequences

GCGGC TCAAC CGTAA AATTG CAGTT GCGGC TCATC CGTAA AGTTG CAGTTY.R....

GGTGCTTAACCCTAAAATCGCAGTTGGTGCTTAACCGTAAAATCTCAGTT....................K.....

Operational Taxonomic Unit (OTU)

OTUs are defined as a cluster of sequences with an identity above a given threshold, often set to 97%.

Amplicon Sequence Variant (ASV)

'True' biological sequences after a denoising procedure to control for errors of the sequencing technology per batch/run.

OTUs vs ASVs

OUT @ 97%	ASV		
Can be subject to reference bias	A reference is not used until after taxonomy assignment		
OTU-tables cannot be combined between studies	ASV-tables can be combined across studies		
Represented by a consensus sequence	Represented by an exact sequence		
A consensus sequence can represent multiple species with different sequences	If it represents multiple species, it is because they share an identical sequence		

Limitations and biases

Experimental	Mitigation
Step 1: sample collection	
Transport and storage conditions	Immediate freezing at – 20 °C or lower, followed by long-term storage at – 80 °C.
Step 2: DNA extraction	
Different methods	The same method should be used in a whole project
Step 3: PCR amplification	
No 16S rRNA gene PCR primer pair is truly 'universal' and different primer pairs may have different proportions of 'conserved' sequences.	The same method should be used in a whole project
All protocols are sensitive to contaminating DNA throughout the process	Negative (extraction) controls should be included
Step 4: Next-generation sequencing	
Short sequences (few hundred bases)	Keep method consistent within a project
Step 5: Bioinformatics analysis	
16S rRNA gene NGS results are generally presented as proportional abundances of OTUs/ASVs	The use of protocols that determine the absolute quantity of OTUs/ASVs improves the interpretation.

Limitations and biases

- There are numerous options for analysis of amplicon sequencing, be consistent within a project.
- Whichever method is selected, be aware of the limitations and acknowledge them as a part of your discussion.
- There are multiple free web resources/pipelines for omics data processing, filtering and analysis, be aware of default settings and options as they may not be comparable from tool to tool.